HA on endothelium induced by proinflam-
matory stimuli (30), this ligand pair would
participate in the process of extravasation
into these sites (8).
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Functional Coherence of the
Human Y Chromosome

Bruce T. Lahn and David C. Page

A systematic search of the nonrecombining region of the human Y chromosome (NRY)
identified 12 novel genes or families, 10 with full-length complementary DNA se-
quences. All 12 genes, and six of eight NRY genes or families previously isolated by
less systematic means, fell into two classes. Genes in the first group were expressed
in many organs; these housekeeping genes have X homologs that escape X inacti-
vation. The second group, consisting of Y-chromosomal gene families expressed
specifically in testes, may account for infertility among men with Y deletions. The
coherence of the NRY’s gene content contrasts with the apparently haphazard content

of most eukaryotic chromosomes.

Functional or developmental themes have
rarely been ascribed to whole chromosomes
in eukaryotes. Instead, individual chromo-
somes appear to contain motley assortments
of genes with extremely heterogeneous pat-
terns of developmentally regulated expres-
sion. We speculated that the human Y
chromosome might be a functionally coher-
ent exception, at least in its nonrecombin-
ing portion (the NRY), which makes up
95% of its length (1). It is known to differ
from all other nuclear human chromosomes
by the absence of recombination, its pres-
ence in males only, its common ancestry

Howard Hughes Medical Institute, Whitehead Institute,
and Department of Biology, Massachusetts Institute of
Technology, 9 Cambridge Center, Cambridge, MA
02142, USA.

and persistent meiotic relationship with the
X chromosome, and the tendency of its
genes to degenerate during evolution (2).
From the 1950s to the present day, many
biologists have assumed that the Y chromo-
some is a functional wasteland, despite the
discovery of several NRY genes during this
period. Studies of human pedigrees had
identified many traits exhibiting autosomal
or X-linked inheritance but no convincing
cases of Y-linked inheritance (3). In 1959,
reports of XO females and XXY males es-
tablished the existence of a sex-determining
gene on the human Y chromosome (4), but
this was perceived as a special case on a
generally desolate chromosome. The waste-
land model has been revised only during the
past decade, when eight NRY transcription
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Fig. 1. Gene map of NRY. The Y chromosome consists of a large nonrecom-
bining region (NRY; euchromatin plus heterochromatin) flanked by pseudo-
autosomal regions (yellow). Pter, short-arm telomere; qgter, long-arm telo-
mere. The NRY is shown divided into 43 ordered intervals (1A1A through 7)
defined by naturally occurring deletions; deletion intervals previously shown
to contain Y-specific repeats are shaded blue (70, 77). Listed immediately
above the chromosome are nine NRY genes with functional X homologs
(red); novel genes are boxed. Immediately below the chromosome are 11

units (or families of closely related tran-
scription units) were identified, mostly dur-
ing regionally focused, positional cloning
experiments (5-8). Even in recent years, it
has been argued that the NRY’s gene con-
tent is essentially limited to random disin-
tegrating vestiges of its common ancestry
with the X (9). The Y-specific repetitive
sequences that are so plentiful in the eu-
chromatic regions (10, 11) have often been
assumed to be functionally inert (12). Re-
alizing that these wasteland theories were
based on limited anecdotal data about the
NRY’s gene content, we decided to embark
on a broad, systematic gene hunt that could

Fig. 2. Transcription of 12 novel NRY
genes in human tissues. Autoradio-
grams were produced by hybridiza-
tion of 32P-labeled cDNA probes to
Northern blots of polyadenylated
RNAs (2 pg per lane) from human
tissues (Clontech). Probes used were
cDNA clones, either full-length (most
genes) or partial (DBY, nucleotides
1476 through 2319 of GenBank no.
AF000985; UTY, nucleotides 861
through 1768 of GenBank no.
AF000996; and DFFRY, nucleotides
8604 through 9878 of GenBank no.
AF000986). Hybridization was done
at65°Cin 0.5 M NaPO, (pH 7.5) and
7% SDS; washing was done at 65°C
in 1X SSC and 0.1% SDS. DBY, -
TB4Y, EIF1AY, and DFFRY probes
cross-hybridize to transcripts derived
from their X homologs. For all five X-
homologous genes (DBY, PRY,
TB4Y, EIF1AY, and DFFRY'), expres-
sion was tested and confirmed in
three male tissues (brain, prostate,
and testis) by RT-PCR using Y-spe-
cific primers (not shown in figure). For
DFFRY, previously thought to be a
transcribed pseudogene, these ex-
pression studies confirm published
findings (79).
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uncover previously unrecognized functional
patterns.

A complete description of the NRY’s
gene content cannot be obtained with
current research methods, short of se-
quencing the entire NRY. However, it
should be possible to obtain a broad rep-
resentative sampling of NRY genes that
could enable us to make comprehensive
generalizations. We searched for this sam-
pling in sequences transcribed in a single
complex organ, the testis. To assess the
suitability of the testis and of a “cDNA
selection” protocol (13) for this project,
we first sought to crudely measure what
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testis-specific genes or families (blue), some with multiple locations. Within
deletion intervals, genes have not been ordered. Some testis-specific families
probably have members in additional deletion intervals; indicated locations
are representative but not necessarily exhaustive. At bottom are shown NRY
regions implicated, by deletion mapping, in sex determination, germ cell
tumorigenesis (gonadoblastoma), determination of stature, and spermato-
genic failure (7, 8, 28, 31). For DFFRY, previously thought to be a pseudo-
gene, these mapping studies confirm published findings (79).

fraction of human genes, regardless of de-
velopmental regulation, are detectably
transcribed there. We did this by testing
whether previously identified pseudoauto-
somal genes (1), whose diversity in devel-
opmentally regulated expression is like
that of autosomal genes, could be found
among testis transcripts. The nine known
pseudoautosomal genes were previously
identified using mRNA sources as special-
ized as liver, pineal gland, and skeletal
muscle. The extent to which we recovered
the nine known pseudoautosomal genes
from sampling of testis cDNA would pro-
vide a measure of this tissue’s adequacy in
representing a broad array of genes.

In fact, we recovered testis cDNAs for
all nine known pseudoautosomal genes,
which suggested that the testis as a single
source would be sufficient to provide near-
ly comprehensive access to NRY genes.
From primary, uncloned testis cDNA, we
selected and determined the nucleotide
sequence of 2539 fragments that hybrid-
ized to Y-chromosomal DNA. We antici-
pated that these sequence fragments would
represent a redundant sampling of a much
smaller set of genes. Nucleotide sequence
analysis revealed that 579 fragments cor-
responded to known Y genes, including all
nine pseudoautosomal genes previously re-
ported and seven of eight known NRY
genes. (The one previously reported NRY
gene that we failed to recover was
AMELY, which is expressed only in devel-
oping tooth buds.) After further analysis,
both to eliminate human repetitive se-
quences and to assemble overlapping frag-
ments into contigs, novel sequences were
hybridized to Southern (DNA) blots of
human genomic DNAs. Sequences that
detected at least one prominent male-spe-
cific fragment were judged likely to derive
from the NRY, and for each we attempted
to isolate ¢cDNA clones from a human
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Table 1. Twelve novel genes and gene families in the NRY.

NRY genes and gene families

Functional X homologs

Gene
symbol

Gene name

Comments

GenBank
no.

Tissue
expression

Multicopy
onY

GenBank
no. or ref.

X-Y amino acid
sequence identity

Gene
symbol

Escape X
inactivation

DBY

B4Y
EIF1AY

ury

DFFRY

CDY

BPY1

BPY2

XKRY

PRY

TTY1

TTY2

Dead Box Y

Thymosin B4,
Y isoform
Translation Initiation
Factor 1A,
Y isoform
Ubiquitous TPR
motif Y

Drosophila Fat
Facets Related Y

Chromodomain Y

Basic Protein Y 1

Basic Protein Y 2

XK Related Y

PTP-BL Related Y

Testis Transcript Y 1

Testis Transcript Y 2

Novel protein; “DEAD
box” motif suggests
that this may be an
RNA helicase (32)

X homolog sequesters
actin (77)

X homolog is an
essential initiation
factor (718)

Mouse Y homolog
recently shown to
encode an H-Y
antigen; contains 10
tandem “TPR” motifs
implicated in
protein-protein
interaction (33);
differential splicing
may generate
isoforms differing at
COOH-terminals

X homolog recently
described; Y
previously thought to
carry a transcribed
pseudogene;
homologous to
Drosophila
deubiquinating
enzyme required for
eye development and
oogenesis (19, 34)

Novel protein with
“chromodomain” (35)
and putative catalytic
domain (36); might
modify DNA or
chromosomal
proteins during
spermatogenesis

Novel 125-residue
protein rich in Ser,
Lys, Arg, and Pro
calculated; isoelectric
point (pl) 9.4;
Southern blotting
reveals X homolog,
but no X-derived
cDNA clones
identified to date

Novel 106-residue
protein; calculated pl
10.0

Novel protein with
similarity to XK, a
putative membrane
transport protein (37)

Novel protein with some
similarity to PTP-BL,
a putative protein
tyrosine phosphatase
38)

No significant open
reading frame
identified

No significant open
reading frame
identified

AF000985
AF000984

AF000989

AF000987

AF000996
AF000995
AF000994

AF000986

AF000981

AF000979

AF000980

AF000997

AF000988

AF000990

AF000991

Ubiquitous

Ubiquitous

Ubiquitous

Ubiquitous

Ubiquitous

Testis

Testis

Testis

Testis

Testis

Testis

Testis

No

No

No

No

No

Yes

Yes

Yes

Yes

Yes

Yes

Yes

DBX AF000983

AF000982

91% Yes

TB4X (17) 93% Yes

EIF1AX (78) 97% Yes

utx AF000992

AF000993

85% Yes

DFFRX (19) 91% Yes

testis library (13). Nucleotide sequencing
of cDNA clones and rescreening of librar-
ies as necessary yielded full-length cDNA
sequences for 10 novel NRY genes or fam-

www.sciencemag.org ® SCIENCE ¢ VOL. 278 * 24 OCTOBER 1997

ilies and partial cDNA sequences for two
additional ones (Table 1). We localized all
12 novel genes on the Y chromosome (Fig.
1) (I14) and assessed their expression in

diverse human tissues by Northern (RNA)
blotting (Fig. 2). The novel genes encode
an assortment of proteins (Table 1) and
are dispersed throughout the euchromatic
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portions of the NRY (Fig. 1).

Although our gene hunt was systematic,
it is likely that some NRY genes in addition
to AMELY escaped detection; this could
have resulted from failure to select corre-
sponding cDNAs or from discarding them
during subsequent screening steps. Like
AMELY, other NRY genes may not have
been recovered because they are not tran-
scribed in sufficient amounts in the testis.
Our screening criteria may have discrimi-
nated against NRY genes located in regions
of exceptionally high sequence similarity to
the X chromosome. In particular, we may
have overlooked genes located in a 4-Mb
region of the NRY characterized by 99%
sequence identity to the X (15). Nonethe-
less, we suspect that the gene hunt was
sufficiently comprehensive for us to form
meaningful generalizations about the NRY’s
gene content.

The 12 novel genes readily sort into two
discrete classes (Table 1). The first group, of
five novel NRY genes, has several shared
features. Each gene has a homolog on the X
chromosome encoding a very similar but
nonidentical protein isoform; every gene is
expressed in a wide range of human tissues;
and each gene appears to exist in a single
copy on the NRY. The other seven novel
NRY genes constitute the second group and
share quite different traits. They appear to
be expressed specifically in testes. They also
seem to exist in multiple copies on the
NRY, as judged by (i) the number and
intensity of hybridizing fragments on
genomic Southern blots or (ii) multiple
map locations on the Y. The two classes of
genes suggested by our NRY-wide search
also accommodate six of eight NRY genes
previously identified by less systematic
means (5-8, 16), confirming the validity of
this bipartite classification.

Many of the X-homologous genes appear
to be involved in cellular housekeeping, as
suggested by their ubiquitous expression
and by the functions of their encoded pro-
teins, which are well established in three
cases. TB4Y encodes a Y isoform of thymo-
sin B4, which functions in actin sequestra-
tion (17) and which we found to be encod-
ed by the X chromosome. EIFIAY encodes
a Y isoform of elF-1A, an essential transla-
tion initiation factor (18). RPS4Y encodes a
Y isoform of an essential ribosomal protein
(6).

In contrast with these single-copy, X-
homologous housekeeping genes, the mul-
ticopy NRY gene families appear to encode
proteins with more specialized functions.
All appear to be expressed specifically in
the testis. Our study identified full-length
cDNA clones for five of these gene families,
which were all found to encode proteins not
previously characterized (Table 1). Several

678

of the testis-specific gene families may en-
code DNA- or RNA-binding proteins, in-
cluding two small, unrelated basic proteins,
BPY1 and BPY2 (Table 1); two putative
RNA-binding proteins, RBM and DAZ (7,
8); and CDY, which contains a “chromodo-
main” [a chromatin-binding motif (Table
D]

We postulate that the NRY’s evolution
was dominated by two strategies. The first
strategy favored conservation of particular
X-Y gene pairs to maintain comparable
expression of certain housekeeping func-
tions in males and females. This strategy is
at odds with the general behavior of X-Y
gene pairs during mammalian evolution.
The mammalian X and Y chromosomes
evolved from autosomes; most ancestral
gene functions were retained on the nas-
cent X chromosome but deteriorated on
the nonrecombining portion of the emerg-
ing Y chromosome (2). This resulted in
females having two copies but males hav-
ing only one copy of many genes, an in-
equality predominantly addressed in mam-
mals by transcriptional silencing, or inac-
tivation, of one X chromosome in females.
Our findings on X-homologous NRY
genes, together with previous studies, sug-
gest the importance in human evolution of
an additional solution: preservation of ho-
mologous genes on both NRY and X, with
male and female cells expressing two cop-
ies of such genes. A critical prediction of
this model is that the X homologs should
escape X inactivation. This is the case for
all widely expressed X-linked genes with
known NRY homologs, including the X
homologs of the five novel NRY genes
reported here (6, 19-21). A second pre-
diction is that the X- and Y-encoded pro-
teins should be functionally interchange-
able despite considerable divergence of
their genes’ nucleotide sequences. Indeed,
each of the eight known X-NRY gene
pairs encodes closely related isoforms,
with 85 to 97% amino acid identity
throughout their lengths; functional inter-
changeability has been demonstrated in
the one case tested to date (22).

These dosage compensation strategies
may be relevant to Turner syndrome,
which is classically associated with an XO
sex chromosome constitution. The Turner
phenotype may be due to inadequate ex-
pression of certain X-Y common genes
that escape X inactivation (23). Given
that several X-NRY genes appear to be
involved in cellular housekeeping, we
speculate that some features of the XO
phenotype (such as poor fetal viability)
reflect inadequate expression of particular
housekeeping functions. The X-homolo-
gous NRY genes (Fig. 1) should be inves-
tigated as Turner candidates (24).

In addition to the strategy for conserv-
ing certain X-Y gene pairs, a second strat-
egy probably shaped the NRY’s evolution.
This strategy favored the acquisition of
testis-specific families, perhaps through
selectively retaining and amplifying genes
that enhance male reproductive fitness.
Animal genomes may contain genes or
alleles that enhance male reproductive fit-
ness but are inconsequential or even det-
rimental to females, as first appreciated by
Fisher (25). Fisher recognized that selec-
tive pressures would favor the accumula-
tion of such genes in male-specific regions
of genomes. Of course, male reproductive
fitness depends critically on sperm produc-
tion, the task of the adult testis. As the
only male-specific portion of the mamma-
lian genome, the NRY should have a
unique tendency to accumulate male-ben-
efit genes during evolution. Consider the
human NRY’s DAZ gene cluster, de novo
deletions of which are associated with se-
vere spermatogenic defects (8). The DAZ
cluster on the human Y chromosome arose
during primate evolution by transposition
and amplification of an autosomal gene.
Similarly, two other testis-specific NRY
gene families—RBM and TSPY—may also
be the result of the Y chromosome having
acquired and amplified autosomal genes
(26). We speculate that the selective ad-
vantage conferred by the NRY’s retention
and amplification of male fertility factors
(from throughout the genome) accounts
for the multitude of testis-specific gene
families there. These activities may have
been preeminent in shaping the NRY’s
gene repertoire, because it appears that
most NRY transcription units are members
of testis-specific families (27). We suspect
that most of the NRY’s transcription units
do not date from the Y chromosome’s
common ancestry with the X chromosome
but instead are more recent acquisitions.

The importance of the human Y chro-
mosome in fertility has been underscored
by recent genetic studies. Many men with
spermatogenic failure, although otherwise
healthy, lack portions of the NRY (7, 8,
28). These findings have suggested the
existence of NRY genes that play critical
roles in male germ cell development but
are not required elsewhere in the body.
Previous deletion-mapping studies have
implicated four regions of the NRY in
either spermatogenic failure or germ cell
tumorigenesis, and in each of the four
regions we now report novel candidate
genes expressed specifically, or most abun-
dantly (29), in testes (Figs. 1 and 2).

Although X-homologous and testis-
specific genes are somewhat intermingled
within the NRY, clustering is evident (Fig.
1). The geographic distribution of the two
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classes correlates well with previously
identified sequence domains within the
euchromatic NRY (10, 11). Ten of the 11
known testis-specific families map to pre-
viously identified regions of Y-specific re-
petitive sequences (30). Indeed, one or
more testis-specific gene families are
found in nearly all known regions of eu-
chromatic Y repeats (Fig. 1). Ironically, it
had been widely assumed, partly on theo-
retical grounds, that these domains con-
sisted of “junk” DNA (12). To the con-
trary, our results argue that these Y-specif-
ic repetitive regions are gene-rich, con-
taining most of the NRY’s transcription
units (27). We speculate that these were
regions of rampant gene amplification dur-
ing mammalian evolution. By contrast,
none of the eight X-homologous genes
map to the Y-repeat domains; they all map
to regions previously identified as consist-
ing largely of single-copy (or in some cases
X-homologous) sequences. We postulate
that, earlier in mammalian evolution,
these regions of the NRY shared extensive
nucleotide sequence identity with the X
chromosome.

Although more genes probably remain
to be discovered, the 20 genes and families
shown in Fig. 1 may constitute the major-
ity of NRY genes, and full-length ¢cDNA
sequences are available for 18 of them.
The stage is now set for systematic evolu-
tionary, biochemical, and cell-biological
studies of this distinctive segment of the
human genome.
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Exploring the Metabolic and Genetic Control of
Gene Expression on a Genomic Scale

Joseph L. DeRisi, Vishwanath R. lyer, Patrick O. Brown*

DNA microarrays containing virtually every gene of Saccharomyces cerevisiae were used
to carry out a comprehensive investigation of the temporal program of gene expression
accompanying the metabolic shift from fermentation to respiration. The expression
profiles observed for genes with known metabolic functions pointed to features of the
metabolic reprogramming that occur during the diauxic shift, and the expression patterns
of many previously uncharacterized genes provided clues to their possible functions. The
same DNA microarrays were also used to identify genes whose expression was affected
by deletion of the transcriptional co-repressor TUP1 or overexpression of the transcrip-
tional activator YAP1. These results demonstrate the feasibility and utility of this ap-
proach to genomewide exploration of gene expression patterns.

The complete sequences of nearly a dozen
microbial genomes are known, and in the
next several years we expect to know the
complete genome sequences of several
metazoans, including the human genome.
Defining the role of each gene in these
genomes will be a formidable task, and un-
derstanding how the genome functions as a
whole in the complex natural history of a
living organism presents an even greater
challenge.

Knowing when and where a gene is
expressed often provides a strong clue as to
its biological role. Conversely, the pattern
of genes expressed in a cell can provide
detailed information about its state. Al-
though regulation of protein abundance in
a cell is by no means accomplished solely
by regulation of mRNA, virtually all dif-
ferences in cell type or state are correlated
with changes in the mRNA levels of many
genes. This is fortuitous because the only
specific reagent required to measure the
abundance of the mRNA for a specific
gene is a cDNA sequence. DNA microar-
rays, consisting of thousands of individual
gene sequences printed in a high-density
array on a glass microscope slide (I, 2),
provide a practical and economical tool
for studying gene expression on a very
large scale (3-6).

Saccharomyces cerevisiae is an especially
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favorable organism in which to conduct a
systematic investigation of gene expression.
The genes are easy to recognize in the ge-
nome sequence, cis regulatory elements are
generally compact and close to the tran-
scription units, much is already known
about its genetic regulatory mechanisms,
and a powerful set of tools is available for its
analysis.

A recurring cycle in the natural history
of yeast involves a shift from anaerobic
(fermentation) to aerobic (respiration) me-
tabolism. Inoculation of yeast into a medi-
um rich in sugar is followed by rapid growth
fueled by fermentation, with the production
of ethanol. When the fermentable sugar is
exhausted, the yeast cells turn to ethanol as
a carbon source for aerobic growth. This
switch from anaerobic growth to aerobic
respiration upon depletion of glucose, re-
ferred to as the diauxic shift, is correlated
with widespread changes in the expression
of genes involved in fundamental cellular
processes such as carbon metabolism, pro-
tein synthesis, and carbohydrate storage
(7). We used DNA microarrays to charac-
terize the changes in gene expression that
take place during this process for nearly the
entire genome, and to investigate the ge-
netic circuitry that regulates and executes
this program.

Yeast open reading frames (ORFs) were
amplified by the polymerase chain reaction
(PCR), with a commercially available set of
primer pairs (8). DNA microarrays, con-
taining approximately 6400 distinct DNA
sequences, were printed onto glass slides by
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using a simple robotic printing device (9).
Cells from an exponentially growing culture
of yeast were inoculated into fresh medium
and grown at 30°C for 21 hours. After an
initial 9 hours of growth, samples were har-
vested at seven successive 2-hour intervals,
and mRNA was isolated (10). Fluorescently
labeled cDNA was prepared by reverse tran-
scription in the presence of Cy3(green)-
or Cy5(red)-labeled deoxyuridine triphos-
phate (dUTP) (11) and then hybridized to
the microarrays (12). To maximize the re-
liability with which changes in expression
levels could be discerned, we labeled cDNA
prepared from cells at each successive time
point with Cy5, then mixed it with a Cy3-
labeled “reference” cDNA sample prepared
from cells harvested at the first interval
after inoculation. In this experimental de-
sign, the relative fluorescence intensity
measured for the Cy3 and Cy5 fluors at
each array element provides a reliable mea-
sure of the relative abundance of the corre-
sponding mRNA in the two cell popula-
tions (Fig. 1). Data from the series of seven
samples (Fig. 2), consisting of more than
43,000 expression-ratio  measurements,
were organized into a database to facilitate
efficient exploration and analysis of the
results. This database is publicly available
on the Internet (13).

During exponential growth in glucose-
rich medium, the global pattern of gene
expression was remarkably stable. Indeed,
when gene expression patterns between the
first two cell samples (harvested at a 2-hour
interval) were compared, mRNA levels dif-
fered by a factor of 2 or more for only 19
genes (0.3%), and the largest of these dif-
ferences was only 2.7-fold (14). However, as
glucose was progressively depleted from the
growth media during the course of the ex-
periment, a marked change was seen in the
global pattern of gene expression. mRNA
levels for approximately 710 genes were
induced by a factor of at least 2, and the
mRNA levels for approximately 1030 genes
declined by a factor of at least 2. Messenger
RNA levels for 183 genes increased by a
factor of at least 4, and mRNA levels for
203 genes diminished by a factor of at least
4. About half of these differentially ex-
pressed genes have no currently recognized
function and are not yet named. Indeed,
more than 400 of the differentially ex-
pressed genes have no apparent homology
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