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SUMMARY 28 

The surprising number and functional diversity of genes implicated in autism spectrum 29 

disorder (ASD) has made it challenging to identify core pathophysiological mechanisms or 30 

envision interventions with broad therapeutic potential. Here, parallel CRISPR-Cas13-based 31 

knockdown of 28 ASD genes and neighboring long non-coding RNAs reveals striking 32 

convergence on shared transcriptomic effects and neurodevelopmental phenotypes in human 33 

neural progenitor cells and cerebral organoids. Perturbations of single ASD genes caused the 34 

widespread dysregulation of other ASD genes, and de novo reconstruction of gene regulatory 35 

networks uncovered the prominent autism risk gene CHD8 as a critical driver of this transcriptomic 36 

convergence. The transcriptional activator ZFX, which escapes X chromosome inactivation in 37 

females, was also identified as a key regulator of ASD genes, revealing genetic underpinnings of 38 

the female protective effect. Thus, this study provides a crucial framework for uncovering how 39 

variants in diverse genes can cause convergent pathophysiological effects that ultimately result 40 

in a shared diagnosis.  41 
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INTRODUCTION 42 

Autism spectrum disorder (ASD) is a common neurodevelopmental condition characterized 43 

by deficits in social communication as well as restricted and/or repetitive behaviors. Although ASD 44 

is clinically heterogeneous, these central features can be used diagnostically to distinguish ASD 45 

from other neurodevelopmental disorders (DSM-5, 2013), indicating that certain biological 46 

foundations of ASD are shared across individuals. Moreover, ASD has a significant genetic 47 

component (Bai et al. 2019), and several large-scale studies have identified genes implicated in 48 

ASD (ASD genes) (Grove et al. 2019; Satterstrom et al. 2020; Trost et al. 2022). These studies 49 

have enabled the compilation of ASD genes into large databases such as the Simons Foundation 50 

Autism Research Initiative (SFARI) Gene database (Abrahams et al. 2013), which has surprisingly 51 

revealed that hundreds of genes with diverse functions are implicated in ASD. Understanding how 52 

disruptions in such seemingly disparate genes lead to the core pathophysiology of ASD remains 53 

a major challenge (Liao et al. 2023).  54 

Furthermore, while previous studies have primarily focused on identifying protein-coding 55 

genes (PCGs) implicated in ASD, there is emerging evidence that non-coding sequences can 56 

also play important roles in brain development. For instance, genetic disruptions in multiple long 57 

non-coding RNAs (lncRNAs) have now been implicated in ASD (Noor et al. 2010; Luo et al. 2018; 58 

Ang et al. 2019; Andersen et al. 2024), suggesting that mutations in lncRNAs can cause ASD. 59 

Moreover, transcriptomic analyses of ASD brain tissue have found that lncRNAs are frequently 60 

dysregulated in ASD (Ziats and Rennert 2013; Parikshak et al. 2016), including lncRNAs that are 61 

in close proximity to ASD-associated PCGs. As certain classes of lncRNAs have been found to 62 

modulate the expression and/or function of their nearby genes (Luo et al. 2016; Wang et al. 2020), 63 

this raises the possibility that lncRNAs neighboring ASD PCGs could play particularly critical roles 64 

in ASD-relevant molecular pathways even if they are not directly disrupted. 65 

Additionally, ASD has a significantly higher prevalence in males, with approximately 3-4 males 66 

diagnosed for every female (Loomes et al. 2017; Maenner et al. 2023). Although ASD genes have 67 
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been identified on the X chromosome (Mendes et al. 2024), X-linked causes of ASD alone cannot 68 

fully explain the male-biased prevalence of ASD (Ropers and Hamel 2005; Werling 2016; Martin 69 

et al. 2021). Moreover, females with ASD tend to have a greater genetic load of autosomal ASD 70 

variants than males (Jacquemont et al. 2014; Pinto et al. 2014; Zhang et al. 2020; Napolitano et 71 

al. 2022; Wigdor et al. 2022; Antaki et al. 2022; Warrier et al. 2022), suggesting that females 72 

require more autosomal genetic risk to manifest ASD. However, the genetic mechanisms of this 73 

“female protective effect” (Werling 2016; Dougherty et al. 2022) have yet to be uncovered. 74 

Here, functional interrogation of ASD genes and neighboring lncRNAs in human neural 75 

progenitor cells (NPCs) and cerebral organoids reveals remarkably widespread transcriptomic 76 

convergence, which we define as statistically significant overlap of the same individual 77 

differentially expressed genes (DEGs) across different conditions. Strikingly, most perturbations 78 

resulted in DEGs that were enriched for other ASD genes. De novo reconstruction of a gene 79 

regulatory network (GRN) enabled the identification of central regulators, including the well-known 80 

ASD gene CHD8 as well as novel candidates such as REST, that drive transcriptomic 81 

convergence in ASD. Furthermore, the X-linked transcriptional activator ZFX, which escapes X 82 

chromosome inactivation (XCI) in females, emerged as a key regulator of ASD genes, 83 

demonstrating that expression from the “inactive” X chromosome is an important biological 84 

foundation of the female protective effect. Disruption of several ASD genes and neighboring 85 

lncRNAs also led to phenotypic convergence, affecting the critical processes of proliferation in 86 

NPC cultures and neurogenesis in cerebral organoids. Thus, this work reveals how key GRNs 87 

become broadly dysregulated upon disruption of a single ASD gene, uncovering molecular 88 

mechanisms of transcriptomic convergence in ASD. Moreover, these results highlight central 89 

regulators such as CHD8 and REST, which are promising targets for future therapeutic 90 

interventions that could provide broad benefits across diverse genetic causes of ASD. 91 

 92 

  93 
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RESULTS 94 

Consensus-ASD Reveals Shared and Unique Features Across Classes of Genetic Variation 95 

The genetic underpinnings of ASD have primarily been investigated in the context of genes 96 

that are recurrently disrupted by rare de novo copy number variants (CNVs) or single nucleotide 97 

variants (SNVs) in ASD. However, ASD has a complex genetic architecture with contributions 98 

from multiple distinct genetic variant classes (Iakoucheva et al. 2019; Dias and Walsh 2020; 99 

Willsey et al. 2022). Thus, we first systematically aggregated variants implicated in ASD from 32 100 

different studies across seven different genetic variant classes: 1) germline SNVs and indels 101 

implicated in idiopathic ASD, 2) syndromic variants with ASD as a recurrent feature, 3) somatic 102 

SNVs and indels, 4) germline CNVs, 5) somatic CNVs, 6) inherited recessive variants, and 7) 103 

common variants (GWAS SNPs). This dataset, which we refer to as Consensus-ASD (Fig. 1A), 104 

enabled us to identify shared and unique features across variant classes (Fig. S1-S2 and Table 105 

S1), highlighting differences in genetic constraint (Lek et al. 2016) and developmental 106 

expression patterns. 107 

 108 

Depletion of ASD Genes and Adjacent lncRNAs Causes Similar Effects on Gene Expression 109 

Functional interrogation of ASD genes and their adjacent lncRNAs revealed strongly 110 

overlapping effects on downstream targets. Knockdown (KD) studies were performed for a total 111 

of 38 genes, including 19 SFARI genes and 17 neighboring lncRNAs, as closely adjacent 112 

lncRNAs have often been found to regulate the expression and/or function of their neighbors 113 

(Villegas and Zaphiropoulos 2015; Luo et al. 2016; Wang et al. 2020). This included the lncRNA 114 

NR2F1-AS1, which has itself been implicated in ASD (Ang et al. 2019). NR2F1-AS1 is adjacent 115 

to the SFARI gene NR2F1, which was also included in our study. Additionally, we included the 116 

lncRNA SOX2-OT, a lncRNA recently implicated in ASD (Andersen et al. 2024), along with its 117 

overlapped protein-coding gene (PCG) SOX2, a transcription factor known to play important 118 

roles in neural development (Graham et al. 2003; Lee et al. 2014). 119 
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For each of these genes (Table S2), CRISPR-Cas13 (Konermann et al. 2018; Wei et al. 120 

2023) and an array of three guide RNAs (gRNAs) targeting the gene (Table S3) were used for 121 

KD in human XY (male) NPC cultures (Fig. 1B-C). RNA-seq was performed after 24 hours to 122 

determine the acute effects of these perturbations. Most (28/38, 73.7%) of the target genes 123 

exhibited statistically significant KD relative to non-targeting control (NTC) samples (Fig. 1D and 124 

Table S4), including 19/20 (95%) of the PCGs and 9/18 (50%) of the lncRNAs. Subsequent 125 

analyses were limited to the 28 conditions that demonstrated significant KD. 126 

While only 1 lncRNA (1/19, 5.26%) was significantly differentially expressed upon KD of its 127 

neighboring PCG, the majority of lncRNA KDs (5/9, 55.6%) led to significant differential 128 

expression of their neighboring PCG (Fig. 1E and S3). Of these, most (4/5, 80%) of the lncRNA 129 

KDs resulted in decreased expression of the PCG neighbor, consistent with previous reports 130 

that closely adjacent lncRNAs often positively regulate the expression of their nearby neighbors 131 

(Villegas and Zaphiropoulos 2015; Luo et al. 2016; Wang et al. 2020). Transcriptome-wide 132 

analysis, limited to the 25 samples with at least 50 differentially expressed genes (DEGs), 133 

revealed a strong and significant correlation in fold change of DEGs between each neighboring 134 

lncRNA-PCG pair (8/8, p < 2.2e-16 in each comparison; testing beta ≠ 0) (Fig. S4). Linear 135 

modeling determined that lncRNA-KD fold changes were smaller than PCG-KD fold changes on 136 

a per-gene basis (8/8, p < 2.2e-16 in each comparison; testing beta < 0) (Fig. S4), indicating 137 

that perturbation of these lncRNAs and their neighboring PCGs affect shared downstream 138 

genes but that the magnitude of the effect tends to be weaker upon KD of the lncRNA. This is 139 

consistent with lncRNAs often functioning to fine-tune the expression of critical genes and 140 

signaling pathways (Zhao et al. 2021). Thus, lncRNAs adjacent to ASD genes, and particularly 141 

the lncRNAs highlighted here, warrant further consideration as potential contributors to ASD. 142 

 143 

ASD-Related Perturbations Result in Widespread Dysregulation of Other ASD Genes 144 
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Transcriptome-wide analysis revealed that the ASD-relevant perturbations caused 145 

remarkably broad disruption of other ASD genes. Most sets of DEGs from the individual KDs 146 

exhibited enrichment for genes in Consensus-ASD (21/25, 84%) (Fig. 2A) as well as SFARI 147 

genes (19/25, 76%) (Fig. S5A). This enrichment was uniformly weaker when considering genes 148 

implicated in intellectual disability (SysID) (Kochinke et al. 2016) (Fig. S5A), suggesting that 149 

perturbation of ASD genes particularly affects other ASD genes as opposed to 150 

neurodevelopmental genes more broadly. Thus, perturbation of known ASD genes and 151 

neighboring lncRNAs leads to widespread disruption of other ASD genes. 152 

Surprisingly, we found a striking pattern of transcriptomic convergence on the same individual 153 

DEGs across the different perturbations. This was particularly evident when focusing on high 154 

confidence SFARI (HC-SFARI) genes, the SFARI genes in the highest evidentiary tier for 155 

association with ASD (Fig. 2B). Not only were the same specific genes shared across multiple 156 

perturbations, but they were also largely affected in the same direction by the different KDs. 157 

Moreover, HC-SFARI genes tended to shift in a concordant direction as a result of the different 158 

perturbations even when they did not rise to the level of a statistically significant DEG within a 159 

particular KD sample (Fig. 2C and S5B). While previous functional studies of ASD genes have 160 

identified certain overlapping changes in cell type composition and behavior, evidence of 161 

transcriptomic convergence is quite limited (Paulsen et al. 2022; Weinschutz Mendes et al. 2023; 162 

Li et al. 2023). Indeed, based on functional studies in cerebral organoids it has been proposed 163 

that different ASD mutations largely impact distinct downstream genes (Paulsen et al. 2022). 164 

Thus, the strong convergence on shared ASD DEGs that we observed across numerous ASD 165 

perturbations was highly unexpected. Nevertheless, common patterns of DEGs have been 166 

identified in brain tissue from ASD cases compared to neurotypical controls (Voineagu et al. 2011; 167 

Parikshak et al. 2016; Ramaswami et al. 2020; Gandal et al. 2022), consistent with our findings. 168 

Further analysis of transcriptomic convergence enabled the discovery of candidate ASD risk 169 

genes. We identified genes with following features: 1) significantly downregulated by at least three 170 
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of the ASD KDs; 2) at least 80% concordant in the direction of significant differential expression 171 

across all ASD KDs; and 3) intolerant to loss of function variants, as determined by LOEUF scores 172 

of less than 0.6 (“constrained”). This analysis resulted in a set of 584 genes (Table S5), of which 173 

138 (23.6%) were SFARI genes. This strong enrichment (p = 6.47e-08) of SFARI genes within 174 

the candidate ASD risk genes demonstrates that these criteria can effectively prioritize genes that 175 

indeed contribute to ASD. 176 

 177 

Key Transcription Factors Including REST Target Recurrently Differentially Expressed Genes  178 

 Transcription factors (TFs) that mediate transcriptomic convergence in ASD were uncovered 179 

through MAGIC analysis (Roopra 2020), which identified TFs whose target genes were 180 

significantly differentially expressed in at least 20/25 (80%) of the perturbations (recurrent 181 

MAGIC TFs) (Fig. 2D and S5C). Many of these significant TFs are involved in pathways or 182 

complexes previously linked to ASD, such as SWI/SNF (Wenderski et al. 2020; Valencia et al. 183 

2023), WNT (Kalkman 2012), and CTCF (Price et al. 2023), or have themselves been 184 

implicated in ASD. Of the recurrent MAGIC TFs that have not been directly implicated in ASD, 185 

several exhibited high genetic constraint and co-expression with known ASD genes, features 186 

that have been used to nominate candidate ASD risk genes (Liao et al. 2023). 187 

Of particular interest, RE1 silencing transcription factor (REST) was a significant MAGIC TF 188 

in 24/25 (96%) of our perturbations. While REST has not previously been directly associated 189 

with ASD, it is known to carry out critical neurodevelopmental roles, functioning as a master 190 

negative regulator of neurogenesis (Schoenherr and Anderson 1995; Chong et al. 1995). Re-191 

analysis of REST binding sites from embryonic stem cells (ESCs) (Rockowitz and Zheng 2015) 192 

revealed strong enrichment of SFARI and Consensus-ASD genes within REST target genes 193 

from both human (adj. p = 2.7e-47 and 1.0e-43, respectively) and mouse (adj. p = 4.2e-40 and 194 

4.2e-40, respectively) (Fig. 2E). Genes implicated in intellectual disability (SysID) were also 195 

enriched (adj. p = 7.6e-13 and 2.3e-10, respectively); however, this enrichment was notably 196 
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weaker than that for ASD genes, suggesting that REST is especially important in regulating 197 

ASD-relevant gene expression. 198 

 199 

Gene Regulatory Network Analysis Identifies CHD8 as a Top Driver of Convergence in ASD 200 

 De novo reconstruction of an NPC gene regulatory network (GRN) uncovered critical 201 

regulatory relationships underlying transcriptomic convergence. The bioinformatic tool ARACNe 202 

(Margolin et al. 2006; Lachmann et al. 2016) was used to build GRNs linking transcription 203 

factors (Lambert et al. 2018) and epigenetic regulators (Boukas et al. 2019) to their downstream 204 

targets (regulons). To confirm the validity of this approach, we first constructed a GRN that 205 

excluded data from the seven samples in which the KD target was a potential regulator, which 206 

enabled evaluation of the predictive ability of the ARACNe-derived GRN through comparison 207 

with the held-out RNA-seq data. For all 7/7 (100%) of the KDs, strong and significant cross-208 

enrichment was found between the downregulated DEGs and the 1st and 2nd degree ARACNe 209 

regulons (i.e., direct targets as well as their direct targets) (p < 2.2e-16, Fisher's combined 210 

probability test) (Fig. 3A and S6). Thus, ARACNe is able to effectively capture true regulatory 211 

relationships. We then built an ARACNe GRN from our full set of RNA-seq data. In total, this 212 

identified 101,918 putative regulatory relationships between 1,098 known transcription factors or 213 

epigenetic regulators and 9,464 target genes, including many highly interconnected 214 

relationships between known ASD genes (Fig. 3B).  215 

Genes implicated in ASD are central regulators of the NPC GRN, as demonstrated by 216 

analysis using the PageRank algorithm (Page et al. 1999) (Fig. 3C). Genes in Consensus-ASD 217 

were strongly enriched for high PageRank scores (adj. p = 1.3e-9), indicating their centrality to 218 

the GRN. This enrichment was also significant for SFARI genes (adj. p = 6.7e-4), while SysID 219 

genes demonstrated much weaker enrichment (adj. p = 0.03). Analysis of Hallmark Molecular 220 

Signature Databases pathways (Subramanian et al. 2005) further identified strong enrichment 221 

for genes associated with cell division and proliferation such as G2M checkpoint (adj. p = 1.8e-222 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 30, 2025. ; https://doi.org/10.1101/2025.01.20.634000doi: bioRxiv preprint 

https://doi.org/10.1101/2025.01.20.634000
http://creativecommons.org/licenses/by-nc-nd/4.0/


 10 

3) and mitotic spindle (adj. p = 1.1e-4) within the top PageRank genes, consistent with previous 223 

findings of ASD-related effects on NPC proliferation (Connacher et al. 2022) and tubulin biology 224 

(Lasser et al. 2023; Sun et al. 2024; Kostyanovskaya et al. 2025).  225 

Further GRN analysis identified key regulators driving transcriptomic convergence in ASD. 226 

Regulators whose activity was consistently altered by the KD of ASD genes were identified 227 

using the bioinformatic tool VIPER (Alvarez et al. 2016). Of these, we focused on top drivers of 228 

convergence in ASD by identifying regulators whose targets were enriched for genes in 229 

Consensus-ASD and for genes that are highly central to the network (i.e. gene with high 230 

PageRank scores), which identified 78 key regulators (Fig. S7). Over half of these top 231 

regulators are Consensus-ASD genes themselves (41/78, 52.6%, adj. p = 1.5e-19), and over 232 

one quarter are HC-SFARI genes (21/78, 26.9%, adj. p = 2.e3-20). These top regulators 233 

exhibited remarkably strong cross-regulation (p = 0), as determined by mean normalized degree 234 

(Fig. S7). Analysis of the STRING database of protein-protein interactions (PPIs) (Szklarczyk et 235 

al. 2023) further confirmed that these top regulators are highly interconnected (p = 2.75e-11, 236 

STRING PPI Enrichment Score) (Fig. S8). Taken together, this suggests that these top 237 

regulators not only modulate many ASD genes but also cross-regulate each other, driving 238 

transcriptomic convergence in ASD. 239 

Iterative walktrap clustering identified 5 gene modules within the 78 top regulators that were 240 

especially strongly interconnected (Fig. 3D and S9). Of particular interest, the largest of these 241 

(Fig. S9C) demonstrates a high degree of cross-interaction throughout the module and contains 242 

several notable ASD genes including CHD8, one of the strongest known risk genes for ASD 243 

(Haddad Derafshi et al. 2022). The inferred CHD8 regulons from the GRN were strongly 244 

enriched (1st degree regulon adj. p = 8.7e-8, 1st and 2nd degree regulon adj. p = 9.0e-24) for 245 

genes that were previously identified as direct CHD8 targets through ChIP-seq from NPCs 246 

(Sugathan et al. 2014) (Fig. 3E). The CHD8 ChIP-seq targets were also highly enriched for 247 

genes in Consensus-ASD (adj. p = 4.64e-20), SFARI genes (adj. p = 1.13e-7), and HC-SFARI 248 
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genes (adj. p = 1.13e-7), further supporting the role of CHD8 as a key regulator of ASD gene 249 

expression. 250 

Furthermore, the CHD8-containing module included three regulators (SETD2, SETD5, and 251 

KMT2E) that we had directly perturbed and which we would predict to share many downstream 252 

targets with CHD8. Indeed, the DEGs from these KDs also exhibited enrichment 253 

for CHD8 ChIP-seq targets (adj. p = 8.81e-6, 1.60e-7, and 1.36e-4, respectively), further 254 

demonstrating the convergent regulation of shared targets by critical ASD genes. Interestingly, 255 

CHD8 is not differentially expressed upon KMT2E KD; similarly, KMT2E was not identified as a 256 

direct target of CHD8 by ChIP-seq (Sugathan et al. 2014). Consistent with this, ARACNe 257 

analysis did not identify a direct interaction between CHD8 and KMT2E. This suggests that even 258 

ASD genes that do not directly regulate each other may jointly regulate a shared set of 259 

downstream genes, leading to convergent changes upon their disruption. Moreover, this 260 

analysis highlights CHD8, a high confidence ASD risk gene, as a key regulator driving 261 

transcriptomic convergence in ASD. 262 

 263 

The X-Linked Transcription Factor ZFX is a Key Contributor to the Female Protective Effect 264 

Sex-differential patterns of gene expression could contribute to the female protective effect 265 

(FPE) in ASD. Prior studies have found that autosomal genes that are disrupted or 266 

downregulated in ASD tend to be more highly expressed in the brains of neurotypical females 267 

compared to males, suggesting that female-biased expression of ASD-relevant genes may 268 

contribute to the FPE (Werling et al. 2016; Velmeshev et al. 2023). We hypothesized that X-269 

linked transcriptional regulators that escape XCI could drive these female-biased expression 270 

patterns. Thus, we first sought to identify constrained (LOEUF < 0.6) X-linked regulators of the 271 

candidate ASD risk genes (Table S5) defined earlier in this study. 272 

MAGIC analysis revealed 155 constrained regulators whose targets were significantly 273 

enriched for candidate ASD risk genes (Table S6), including 39 regulators that are themselves 274 
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SFARI genes. Eight of the regulators were X-linked, and their targets were also found to be 275 

significantly enriched within the full set of DEGs from many of the individual ASD gene KDs 276 

(Fig. 4A). To further identify transcriptional regulators of candidate ASD risk genes, we 277 

analyzed our NPC GRN, which identified 229 constrained regulators whose regulons were 278 

significantly enriched for candidate ASD risk genes (Table S7), including 74 regulators that 279 

were SFARI genes and ten regulators that were X-linked (Fig. 4B and S10A). Four of these X-280 

linked regulators could also be analyzed by MAGIC: all of them (4/4, 100%) were positively 281 

identified as significant MAGIC regulators, further reinforcing the strongly concordant results 282 

between these fundamentally different analytical approaches. Together, these analyses 283 

identified 14 constrained X-linked regulators of candidate ASD risk genes, half of which (7/14, 284 

50%) have themselves been implicated in ASD and are considered SFARI genes. This 285 

highlights several X-linked genes that could contribute to the greater prevalence of ASD in 286 

males through their regulation of candidate ASD risk genes (Fig. 4C). 287 

We then sought to uncover regulators that could contribute to the FPE. Of the 14 regulators 288 

identified above, only ZFX has been shown to escape XCI in females (San Roman et al. 2023) 289 

and exhibit female-biased expression in the developing cerebral cortex (Kissel et al. 2024). 290 

Indeed, ZFX is consistently found to be one of the most highly female-biased genes across a 291 

variety of tissue and cell types (Oliva et al. 2020; Blanton et al. 2024). Moreover, ZFX is a 292 

transcriptional activator that has been shown to mediate widespread upregulation of many 293 

autosomal genes (Raznahan et al. 2018; San Roman et al. 2024), supporting its potential 294 

contribution to the FPE. Interestingly, pathogenic variants in ZFX have recently been directly 295 

implicated in ASD (Shepherdson et al. 2024). In our perturbation studies, KD of several different 296 

ASD genes led to downregulation of ZFX (Fig. 4D), suggesting that decreased ZFX activity can 297 

also occur in ASD without requiring direct mutations in ZFX. As females exhibit higher 298 

expression of ZFX, they are better buffered against this change, and thus ZFX could contribute 299 

to sex-differential outcomes even when it is not directly mutated. 300 
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We further investigated the role of ZFX in ASD through re-analysis of ZFX targets that were 301 

previously identified based on ChIP-seq and CRISPR KD experiments in two separate cell lines 302 

(San Roman et al. 2024). Our analysis demonstrated that these ZFX targets are enriched for 303 

ASD-relevant gene sets including SFARI genes and genes that exhibit female-biased 304 

expression in the brain (Fig. 4E). The enrichment of ASD-relevant gene sets was further 305 

validated through re-analysis of additional ChIP-seq data (Rhie et al. 2018) (Fig. S10B). 306 

Furthermore, we analyzed our NPC GRN and found that the ZFX 1st and 2nd degree regulon 307 

includes many (12/78, 15.4%) of the top drivers of transcriptomic convergence in ASD that we 308 

had previously identified (Fig. 4F). Thus, ZFX is an XCI-escaping female-biased regulator of 309 

ASD risk genes that may provide a crucial foundation for the FPE by driving sex-differential 310 

expression of genes that are disrupted in ASD. 311 

 312 

ASD Genes and Adjacent lncRNAs Regulate NPC Proliferation 313 

 We next focused on uncovering potential phenotypic convergence and found that several 314 

ASD gene perturbations caused similar effects on NPC proliferation. Analysis using the 315 

heritable CytoTrack dye (Fig. 5A) revealed that 8/16 (50%) of the SFARI gene KDs led to a 316 

statistically significant decrease in proliferation (Fig. 5B and Table S8). This was also the case 317 

for the lncRNA SOX2-OT, which has previously been implicated in ASD (Andersen et al. 2024), 318 

as well as its overlapped PCG SOX2, a TF known to regulate NPC proliferation (Graham et al. 319 

2003; Lee et al. 2014). In contrast, 1/16 (6.25%) SFARI KDs and 3/8 (37.5%) lncRNA KDs led 320 

to increased NPC proliferation (Fig. 5B), while the remaining 11 perturbations yielded 321 

insignificant and/or inconsistent effects (Fig. S11). The RNA-seq data from these perturbations 322 

did not cluster based on proliferation phenotype (Fig. S12), suggesting that phenotypic effects 323 

for processes such as proliferation may be difficult to predict from RNA-seq data alone, and 324 

underscoring the importance of experimental analysis of such phenotypes.  325 

 326 
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Disruption of ASD Genes and Adjacent lncRNAs Alters Cerebral Organoid Development 327 

 Inducible KD in cerebral organoids further revealed shared neurodevelopmental phenotypes 328 

in a complex model system. We created the FLEx-based Inducible CRISPR Knockdown 329 

(FLICK) construct by engineering several features into a backbone incorporating the FLEx 330 

design (Schnütgen et al. 2003). Ultimately, the FLICK construct enables control over the timing 331 

of KD through doxycycline-inducible genetic recombination that results in the constitutive 332 

expression of Cas13 and an EGFP reporter (Fig. 5C), and this was confirmed to provide strong 333 

KD (Fig. S13A). The FLICK constructs also contained identifying (ID) sequences that can be 334 

captured during scRNA-seq and used to determine the KD target in a given cell, enabling the 335 

analysis of mosaic cerebral organoids. For long-term studies, we targeted ASD genes and 336 

adjacent lncRNAs whose KDs had not been found to impair NPC proliferation (Fig. 5B and Fig. 337 

S11) or survival (not shown). FLICK constructs targeting these various genes were separately 338 

transposed into iPSCs, and subsequently the cells were pooled to generate mosaic organoids 339 

(d0). KD was induced by one day of treatment with doxycycline on d14-15, when the organoids 340 

predominantly consist of PAX6+ NPCs (Fig. S13B). The organoids were grown until they 341 

reached one or two months of development (Fig. 5D), at which point analysis through scRNA-342 

seq enabled the identification of multiple cell types including radial glial progenitors (RGs), 343 

intermediate progenitor cells (IPCs), excitatory neurons (ExNs), and inhibitory neurons (INs) 344 

(Fig. 5E-F and Fig. S13C-D). 345 

These long-term organoid KDs revealed shared changes in cell type composition across 346 

multiple perturbations. Cells with FLICK constructs targeting the SFARI genes BAZ2B, CLASP1, 347 

and EHMT1 as well as the lncRNA ST7-AS1 appeared relatively depleted from the organoids at 348 

both d30 and d60 (Fig. 6A), despite our previous finding that these KDs did not impair NPC 349 

proliferation or survival (Fig. 5B and Fig. S11). Furthermore, these KDs also altered cell type 350 

proportions, leading to relatively more ExNs and fewer RGs (Fig. 6B). Together, this suggests 351 

that disruption of these genes may result in increased ExN differentiation at the expense of RG 352 
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self-renewal, leading to an overall reduction in cell number in the developing organoids. 353 

Additionally, several other KDs appeared to result in an increased proportion of ExNs by the 2-354 

month timepoint, including the SFARI genes PPP3CA and WDFY3 as well as the lncRNAs 355 

NR2F1-AS1 and WDFY3-AS2. Thus, the disruption of multiple different ASD genes and 356 

neighboring lncRNAs results in this convergent neurodevelopmental phenotype, consistent with 357 

previous observations (Paulsen et al. 2022; Jourdon et al. 2023). 358 

 Furthermore, depletion of ASD genes and adjacent lncRNAs resulted in prominent 359 

transcriptomic convergence (Fig. 6C and S14A). Effects on gene expression were analyzed for 360 

each major cell type, which revealed highly overlapping DEGs in RGs with different KDs, further 361 

supporting our previous findings from NPC cultures. Indeed, for many of the KD targets, the 362 

DEGs that resulted from KD in organoid RGs strongly overlapped with the DEGs that we had 363 

previously identified from NPC cultures (Fig. S14B), suggesting that these effects on gene 364 

expression are not specific to a particular model system. Furthermore, strongly overlapping 365 

DEGs were also observed within additional cell types including ExNs (Fig. 6C) and IPCs (Fig. 366 

S14A), demonstrating that the convergence of ASD genes on shared downstream effects is not 367 

unique to neural progenitors. However, some of the specific genes that were convergently 368 

disrupted across perturbations differed between cell types, even when only considering genes 369 

expressed in all of the cell types (Fig. 6D), suggesting that cell-type-specific features impact the 370 

transcriptomic consequences of perturbing ASD genes. Additionally, down-sampling analysis 371 

revealed that the detection of overlapping DEGs heavily depended upon the number of cells 372 

sequenced for each perturbation (Fig. S14C). This demonstrates that strong transcriptomic 373 

convergence cannot be detected unless sufficiently large numbers of cells are analyzed.  374 

Several ASD gene and adjacent lncRNA perturbations resulted in DEGs that were enriched 375 

for other ASD-relevant gene sets, including SFARI genes (Fig. S14D). This enrichment was 376 

observed across multiple cell types at both the d30 and d60 timepoints, further demonstrating 377 

that disruption of a single target gene can lead to broad dysregulation of many ASD genes. 378 
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Furthermore, shared DEGs implicated key transcriptional regulators as potential drivers of 379 

transcriptomic convergence. Analysis using the bioinformatics tool MAGIC (Roopra 2020) 380 

identified regulators whose putative target genes were disrupted by several of the perturbations 381 

(Fig. 6E and Fig. S15). Of the top 25 recurrent regulators identified from the RGs of 1-month 382 

organoids (Fig. S15), over half (14/25, 56%) overlapped with the top recurrent MAGIC TFs that 383 

we had previously identified from NPCs (Fig. 2D). Moreover, this analysis revealed recurrent 384 

regulators in ExNs from 1-month and 2-month organoids (Fig. S15), 21 of which were shared by 385 

ExNs from both timepoints. This set contained several SFARI genes (5/21, 23.8%), including 386 

CHD family members CHD1 and CHD7 (CHD8 is not analyzed by MAGIC due to lack of 387 

ENCODE data at the time of MAGIC’s creation). It also contained multiple genes that had been 388 

identified as top candidate regulators through previous GRN analysis (5/21, 23.8%) including 389 

REST. Interestingly, ten regulators including REST were also shared with the 1-month RGs, 390 

suggesting that these regulators are important drivers of convergence in multiple cellular 391 

contexts. 392 

 393 

Transcriptomic Convergence is Further Revealed by Acute Perturbations in Cerebral Organoids 394 

 Acute disruption of ASD genes and adjacent lncRNAs in 2-month organoids revealed even 395 

greater convergence on shared DEGs. We allowed an additional set of mosaic FLICK organoids 396 

to grow for two months prior to inducing KD by treatment with doxycycline at d61-d62 and 397 

performing scRNA-seq two days later, allowing us to determine the acute effects of disrupting 398 

these genes within organoids that had developed normally. This approach resulted in similar 399 

numbers of cells with each of the different KDs (Fig. 7A and S16A), enabling deeper analysis of 400 

the KDs that had been depleted from the organoids with long-term KD (Fig. 6A). These 401 

organoids contained a mixture of cell types including RGs, IPCs, and ExNs (Fig. 7B and Fig. 402 

S15B-C); however, we focused on ExNs, as they were by far the most abundant cell type at this 403 

timepoint. Interestingly, when limiting our analysis to genes that are expressed in both the 404 
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organoid ExNs and our earlier NPC cultures, many of the KDs resulted in ExN DEGs that were 405 

enriched for the NPC DEGs that we had previously identified (Fig. 7C). While there are certainly 406 

cell-type-specific effects of the different KDs, this demonstrates that there are also shared 407 

changes in gene expression across cell types that can be partially modeled in experimentally 408 

tractable NPC cultures. 409 

Furthermore, for perturbations that had been depleted from organoids over long-term KD, 410 

acute KD enabled us to obtain much greater cell numbers, revealing that these KDs similarly 411 

resulted in transcriptomic convergence (Fig. 7D and S16D-E). The DEGs exhibited strong 412 

enrichment of ASD-relevant genes, including SFARI genes, across several of the perturbations 413 

(Fig. S16F). Analysis of transcriptional regulators through MAGIC (Roopra 2020) identified 31 414 

transcription factors and co-factors whose targets were enriched within the DEGs from at least 415 

half of the perturbations (Fig. 7E). These included 8/10 (80%) of the top regulators that had 416 

previously been identified in all three analyses from the long-term organoid KDs (1-month RGs, 417 

1-month ExNs, and 2-month ExNs). Moreover, seven of these regulators, including REST, had 418 

also been identified as top recurrent MAGIC TFs from the previous NPC studies (Fig. 2D), 419 

further suggesting that they are key drivers of transcriptomic convergence in multiple cellular 420 

contexts and across acute and long-term time scales. Together, these studies reveal ASD 421 

genes and neighboring lncRNAs whose disruptions result in convergent effects on ASD gene 422 

expression as well as shared neurodevelopmental phenotypes in NPCs and cerebral organoids. 423 

 424 

DISCUSSION 425 

Here, we present several functional studies of ASD genes and neighboring lncRNAs in 426 

human NPCs and cerebral organoids, which demonstrated strong transcriptomic convergence 427 

including widespread dysregulation of ASD genes. GRN analysis revealed regulatory 428 

relationships that highlighted key chromatin modifiers and transcription factors, including CHD8 429 

and REST, as critical drivers of transcriptomic convergence. These regulators were highly 430 
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interconnected, with many demonstrating mutual regulation of one another, revealing how 431 

disruption of a single regulator can lead to changes that propagate throughout the network. 432 

Furthermore, the X-linked transcription factor ZFX was identified as a key contributor to the 433 

female protective effect through its female-biased expression and transcriptional activation of 434 

ASD-associated genes, which could buffer the effects of disrupting these genes in females. 435 

More broadly, this highlights a role for the “inactive” X chromosome in potentially mediating sex 436 

differences in ASD. Several ASD gene or neighboring lncRNA perturbations also altered NPC 437 

proliferation, demonstrating that these disruptions can result in shared phenotypic effects. 438 

Moreover, several KDs in cerebral organoids led to altered cell type proportions, resulting in a 439 

relative increase in ExNs. Thus, this work revealed critical insights into how diverse genes, 440 

including lncRNAs, can converge on core transcriptomic changes and neurodevelopmental 441 

phenotypes, ultimately resulting in ASD. 442 

To uncover transcriptomic convergence, we initially focused on functional studies of ASD 443 

genes and neighboring lncRNAs in highly homogeneous human NPC cultures. This enabled 444 

bulk RNA-seq of each perturbation, providing the deep transcriptomic data that was essential for 445 

robust GRN reconstruction. Building an understanding of the complex relationships within GRNs 446 

is critical for identifying key “rate-limiting” factors that affect the GRN as a whole and ultimately 447 

lead to a particular biological outcome (Chakravarti and Turner 2016). For instance, studies of 448 

Hirschsprung disease have identified a crucial GRN centered on the rate-limiting gene RET that 449 

can be impacted by direct mutations in RET itself or in upstream regulators of RET (Chatterjee 450 

et al. 2016). Here, we have similarly identified critical genes such as CHD8 and REST whose 451 

effects can propagate throughout the GRN, driving transcriptomic convergence in ASD. 452 

While some of the specific regulatory relationships uncovered here may be unique to NPCs, 453 

our subsequent studies in cerebral organoids implicated several of these regulators in ExNs as 454 

well. Furthermore, the organoid analyses demonstrated that ExNs also exhibit convergence of 455 

ASD genes on shared downstream targets. Thus, future studies to reconstruct GRNs from 456 
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additional cell types including ExNs will be highly valuable for understanding how regulatory 457 

relationships are reorganized in different cellular contexts. While bioinformatic pipelines for 458 

reconstructing GRNs from scRNA-seq data are actively being refined (Vlahos et al. 2021; 459 

Obradovic et al. 2021), these approaches are currently hampered by limited RNA capture 460 

inherent to the scRNA-seq techniques. As these continue to improve, it will be feasible to 461 

reconstruct robust GRNs from heterogeneous models, including organoids, as well as patient 462 

tissue samples, which will further refine our understanding of gene regulation in complex 463 

biological systems. 464 

This study also identified several lncRNAs that affect the expression of their ASD gene 465 

neighbor or other ASD genes more broadly. Intriguingly, the transcriptomic changes resulting 466 

from the lncRNA KDs in NPCs were highly correlated with those from the KD of their ASD gene 467 

neighbors, though the lncRNAs generally had milder effects, consistent with previous findings 468 

that lncRNAs tend to be more subtle modulators of gene expression (Gao et al. 2020). This was 469 

also the case for NR2F1-AS1 (Ang et al. 2019) and SOX2-OT (Andersen et al. 2024), lncRNAs 470 

that have been directly implicated in ASD. Thus, these lncRNAs may play neurodevelopmental 471 

roles through their effects on ASD genes, providing context to previous findings that many 472 

lncRNAs are dysregulated in ASD (Parikshak et al. 2016). Importantly, lncRNAs have often 473 

been excluded or overlooked in genetic studies (Mattick et al. 2023), and these findings 474 

highlight the value of especially careful consideration of lncRNAs that closely neighbor known 475 

critical genes. 476 

Taken together, these results have broad implications for our understanding of 477 

neurodevelopment and disorders such as ASD. In particular, this work identified several 478 

regulators that drive transcriptomic convergence, including the prominent ASD gene CHD8 as 479 

well as candidates including REST. While REST has not been directly implicated in ASD, 480 

individuals with ASD exhibit decreased expression of REST targets (Katayama et al. 2016), and 481 

treatment with a REST inhibitor can ameliorate deficits in social interaction in a valproic acid 482 
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mouse model of ASD (Kawase et al. 2019). Our findings further support that REST is a critical 483 

regulator of ASD-associated gene expression and suggest a general paradigm for identifying 484 

regulators of transcriptomic changes in ASD that may ultimately suggest new therapeutic 485 

targets. More broadly, while this work focused on ASD, the approaches used here are widely 486 

applicable to different cell types and conditions. Thus, this study serves as a framework for 487 

uncovering critical regulators across a wide diversity of contexts, from development through 488 

disease.   489 
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FIGURE LEGENDS 

Figure 1 

A) Schematic of the major classes of genetic variants within Consensus-ASD. B) Experimental 

design schematic. C) Immunocytochemistry of iPSC-derived NPC cultures. D) Relative 

expression of the targeted gene within each KD sample compared to non-targeting control 

(NTC) samples. Only targets with statistically significant KD are shown (see Table S4). Error 

bars: 95% confidence interval. KD target genes that have been directly implicated in ASD are 

labeled in bold text. E) Proportion of lncRNAs significantly differentially expressed upon KD of 

their neighboring PCG, and proportion of PCGs significantly differentially expressed upon KD of 

their neighboring lncRNA. 

 

Figure 2 

A) Bar plot depicting enrichment of Consensus-ASD genes within the DEGs of each KD 

condition. B) Circos plot depicting HC-SFARI DEGs shared between different KD conditions. C) 

Heatmap showing the relative expression of HC-SFARI genes that are DEGs in at least 5 KD 

conditions (see also Fig. S5B). Statistically significant DEGs are indicated with *. D) MAGIC 

analysis identifying transcriptional regulators whose targets are enriched within the DEGs from 

each KD (see also Fig. S5C). E) Bar plot depicting enrichment of REST targets within SFARI, 

Consensus-ASD, or SysID genes in human and mouse embryonic stem cells. REST target data 

from Rockowitz et al., 2015. Throughout the figure, KD target genes that have been directly 

implicated in ASD are labeled in bold text. 

 

Figure 3 

A) Volcano plot depicting differential expression upon KD of SETD5. Statistically significant 

DEGs with decreased expression are shown in blue, while DEGs with increased expression are 

shown in red. Genes within the 1st and 2nd degree SETD5 regulon, derived from an ARACNe 
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GRN constructed with SETD5 samples held out, are highlighted in pink. Genes within the 1st 

degree regulon are depicted with dark borders. Statistically significant enrichment of 1st and 2nd 

degree regulon genes within the downregulated DEGs is indicated with the adjusted p-value. B) 

Depiction of a subset of the NPC GRN constructed using ARACNE. All regulators are shown 

along with first degree target genes that are in Consensus-ASD or the HC-SFARI gene set. C) 

Gene set enrichment analysis (GSEA) demonstrating enrichment of genes ordered by 

PageRank score within several gene sets. D) Depiction of modules of top regulators identified 

through iterative walktrap clustering. Genes of particular interest are highlighted in red. E) Bar 

plot depicting enrichment of CHD8 targets within several gene categories. Data from CHD8 

ChIP-seq in NPCs from Sugathan et al., 2014. 

 

Figure 4 

A) MAGIC analysis identifying X-linked transcriptional regulators whose targets are enriched 

within the DEGs from the NPC KDs. B) Binary heatmap of GRN-identified, X-linked regulators 

whose regulons are enriched for candidate ASD risk genes. Only target genes that are 

members of at least five of these aforementioned regulons are depicted. C) Network 

visualization of GRN-identified, X-linked regulators of candidate autism risk genes and their 

target genes. Edges directed to the top 20% most frequently targeted genes are depicted in 

black, and edges connecting two regulators are further bolded. All other edges are depicted in 

gray. Nodes representing SFARI genes are outlined in black. D) Heatmap showing the relative 

expression of ZFX upon KD of the indicated target genes. Statistically significant differential 

expression is indicated with *. E) Enrichment of gene sets relevant to autism and the female 

protective effect within ZFX targets identified from ChIP-seq and CRISPR KD experiments in 

San Roman et al., 2024. F) Depiction of the regulatory relationships between ZFX and target 

genes that are top drivers of transcriptomic convergence in ASD (previously identified in Fig. 
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3D). Throughout the figure, KD target genes that have been directly implicated in ASD are 

labeled in bold text. 

 

Figure 5 

A) Schematic of experimental design to analyze proliferation phenotypes using CytoTrack. B) 

Relative CytoTrack intensity over time for each KD condition that exhibited statistically 

significant proliferation phenotypes that were consistent over time. Error bars indicate standard 

error of the mean. Statistical significance was determined using 2-way ANOVA. See Table S8 

for full statistical results.  KD target genes that have been directly implicated in ASD are labeled 

in bold text. C) Design of FLICK constructs for doxycycline-inducible Cas13 KD. D) 

Immunohistochemistry of FLICK organoid at day 60. EGFP = FLICK construct marker; PAX6 = 

NPC marker; TBR2 = intermediate progenitor cell marker; CTIP2 = excitatory neuron marker. E) 

UMAP of integrated organoid scRNA-seq data collected at d30 and d60. F) Expression of 

canonical brain marker genes used for identifying cell types. 

 

Figure 6 

A) Longitudinal analysis of the proportion of cells for each KD target in mosaic organoids in 

which the FLICK constructs were induced by treatment with doxycycline on d14-d15. KD targets 

that appear depleted over time are highlighted with arrows. B) Cell type composition per KD 

target. KD targets with fewer progenitors and an increased relative proportion of excitatory 

neurons are highlighted with arrows. C) Heatmap of cross-enrichment of DEGs for radial glia 

and excitatory neurons. D) Network visualization of DEGs amongst different KDs. The thickness 

of edges represents the number of shared DEGs. Nodes plotted based on clustering with the 

Fruchterman-Reingold algorithm (igraph). Nodes that are closer together have more shared 

DEGs on average. E) MAGIC analysis of DEGs from excitatory neurons (ExNs) in one-month 
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organoids (see also Fig. S15). Throughout the figure, KD target genes that have been directly 

implicated in ASD are labeled in bold text. 

 

Figure 7 

A) Proportion of cells with each KD target from scRNA-seq of mosaic organoids with acute KD. 

B) UMAP of acute KD mosaic organoids from scRNA-seq. C) Bar plot of cross-enrichment of 

DEGs from excitatory neurons (ExNs) from acute KD mosaic organoids versus DEGs from 

previous NPC cultures upon KD of the same target gene. D) Heatmap of cross-enrichment 

between different KD samples in ExNs. E) MAGIC analysis of ExN DEGs. Throughout the 

figure, KD target genes that have been directly implicated in ASD are labeled in bold text. 
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