
Notwithstanding the absence of a constitutive activation of
the UPR, it is intriguing that ATF6 is stabilized in Ube2j1�/�

cells. As part of the HRD1/SEL1L complex, UBE2J1 might be
required for the turnover of ATF6, consistent with the recent
finding that ATF6 is stabilized in absence of SEL1L (19).

The most striking phenotype observed in Ube2j1�/� mice is a
profound defect in spermatid differentiation, known as spermio-
genesis, resulting in male sterility. The massive morphological
changes in the course of spermiogenesis include synthesis of the
acrosome, chromatin condensation and elongation of the
nucleus, formation of the flagellum and remodeling of mem-
brane-delimited organelles. In the final step, called sper-
miation, remaining cytoplasm is eliminated from the sperma-
tid, intercellular cytoplasmic bridges between spermatids are
disrupted, and the strong adhesions between spermatids and
the Sertoli cell (ectoplasmic specializations), with which they
intimately interact, are removed to facilitate their release into

the lumen of the seminiferous tubule (25). UBE2J1 protein was
abundantly present in elongating spermatids, specifically from
step 12 to 15 of sperm differentiation (31), peaking at step 14.
Spermatids at these differentiation steps are largely transcrip-
tionally inactive (32, 33), implying that the transcripts are tran-
scribed earlier, and that translation of the Ube2j1 (and presum-
ably other) transcripts is de-repressed in elongate spermatids
(34). Thus, UBE2J1 is likely required at a critical time within the
elongating spermatid itself for successful completion of the
final steps of differentiation and spermiation. Crossing
Ube2j1fl/fl mice with a germ-cell specific (e.g. Stra8-Cre) or a
Sertoli cell-specific Cre-deleter strain (e.g. Amh-Cre) may allow
us in the future to unequivocally determine the cell-type(s) that
is/are responsible for the defect in spermiogenesis.

Pups from Ube2j1�/� parents are born at expected Mende-
lian ratios, suggesting that in heterozygous mice, Ube2j1� (hap-
loid) sperm are fully functional. This might be explained by the

FIGURE 7. Electron microscopy reveals structural abnormalities in Ube2j1�/� spermatozoa. A, cross sections of aUbe2j1�/� stage IX testis shows retained
spermatids (asterisks) with cytoplasm (arrows) above a layer of elongate spermatids.ES, ectoplasmic specialization.B, wild type elongated spermatids in the
testis. C and D, Ube2j1�/� and (E) wild type spermatids in cross sectioned epididymides. F and G, Ube2j1�/� and (H) wild type spermatids isolated from
epididymides. Ube2j1�/� spermatozoa retain excess cytoplasm around the acrosome and neck region. Note vacuoles (wedges) surrounded by one or more mem-
branes (F), and retained condensed ER (radial body, insets) in Ube2j1�/� spermatozoa (C, D, F, G). Scale bars, 2�m (Aand B); 500 nm (C–F); 100 nm (G); 500 nm (H).
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distribution of cellular contents between cells of a clone derived
from one Ube2j1�/� spermatogonium via cytoplasmic bridges
(35). Ube2j1 transcripts would thereby be shared between adja-
cent cells of the syncytium, allowing proper differentiation of
both Ube2j1� and Ube2j1� spermatids.

Why is spermiation not executed correctly in Ube2j1�/�

testes? Microscopic examination showed aberrant sperma-
tozoa and cellular debris in epididymal sperm preparations.
Ultrastructural examination of epididymal sperm by electron
microscopy revealed excess residual cytoplasm in the head and
midpiece region of spermatozoa. These observations are in line
with the notion that Ube2j1 is critical for cytoplasmic removal
during the last steps of spermatid differentiation. Considerable
structural changes during spermiogenesis in different organ-
elles, particularly the ER, have been observed (23). The struc-
tural metamorphosis of the ER starts from a branched network
of tubular structures, which are spread evenly throughout the
cytoplasm (step 13), over a markedly condensed, glomerular
structure (radial body, step 14), to a completely degenerated
structure, often aggregated with other organelles (step 15). At
step 16, immediately prior to sperm release, the ER is no longer
detectable (23). Levels of UBE2J1 are highest precisely when the
ER is massively remodeled for eventual elimination (steps 13 to
16). We hypothesize that UBE2J1 is involved in the afore-
mentioned remodeling process, possibly by marking excess
proteins for proteasomal degradation. In the absence of
Ube2j1, ER luminal proteins that depend on active UBE2J1
for their removal might be trapped in the ER and block further
condensation of the ER. This might prevent the cell from com-
pleting the necessary removal of cytoplasm, as evidenced by
excess residual cytoplasm in the head region, accompanied by
detached acrosomes, and around the midpiece, probably caus-
ing defects in flagella function. Abnormal spermatids are likely
sensed by Sertoli cells eventually resulting in the spermatid
retention and ultimately, phagocytosis by Sertoli cells. This fail-
ure of spermiation likely explains the starkly reduced sperm
number in the epididymis.

Although essential for the generation of functional sperm
cells, how cytoplasmic removal is accomplished in elongating
spermatids and which genes are involved in this process is not
well understood. In fact, most genes so far associated with
defective cytoplasmic removal encode nuclear proteins, such as
transition nuclear proteins (Tnp1, Tnp2, Ref. 36) and the prot-
amines (Prm1, Prm2, Ref. 37), none of which are likely to
directly participate in cytoplasm removal.

An exception might be LKB1 (liver kinase B1), a kinase that is
predominantly found in the cytoplasm and membrane frac-
tions. Their phenotype with respect to male infertility is strik-
ingly similar to Ube2j1�/� mice. However, unlike in Ube2j1�/�

mice, the epididymis is completely filled with cell debris in
LKB1�/� mice, and LKB1 is expressed in both meiotic and
post-meiotic cells.

An intriguing case is SPEM1 (spermatid maturation 1), a pro-
tein of unknown molecular function, which is expressed exclu-
sively in elongating spermatids between steps 14 and 16, imply-
ing a function in cytoplasm removal and/or spermiation (38).
Akin to Ube2j1�/� mice, SPEM1�/� males (but not females)
are sterile and their sperm are �85% immotile because of severe

deformations in the head/neck region, caused by retention of
cytoplasmic remnants. The ultrastructural characteristics are
strikingly similar to our observations in Ube2j1�/� sperm (38).
SPEM1 interacts with UBQLN1 (ubiquilin 1) at the manchette
of elongating spermatids (39). Although it was postulated that
UBQLN1 participates in spermiogenesis, in vivo support for
this is still pending. UBQLN1 and its homologue UBQLN2
form a complex with p97/VCP and erasin, both of which are
central components of the ER dislocation machinery (40).
UBE2J1, UBQLN1, and SPEM1 may function co-operatively
during the removal of cytoplasm from elongating spermatids.

Taken together, we identify Ube2j1 as a key player in the
elongation of spermatids, arguably one of the most extreme
examples of structural and morphological reorganization of a
cell. The role of Ube2j1 in this context is unique and non-re-
dundant, since Ube2j1’s paralogue Ube2j2 cannot compensate
for the defect in spermiogenesis. Ube2j1 is, to our knowledge,
the first reported gene directly linking the little understood
process of cytoplasm removal in elongating spermatids with the
ubiquitin-proteasome pathway, adding a new layer of regula-
tion to spermiogenesis. Furthermore, our data define a previ-
ously unknown physiological function for ER dislocation, a cel-
lular process, which until recently has been characterized
mostly in established cell lines using biochemical assays. Exam-
ination of ER components in mouse models of male fertility
might well prove informative to further elucidate the cellular
processes that regulate spermiogenesis.

Remarkably, components of the ubiquitin-proteasome path-
way, including Ube2j1, were among the most strongly and
significantly differentially regulated genes in human teratozoo-
spermic sperm (41), suggesting that Ube2j1’s role in spermio-
genesis may be conserved in humans. Considering that the
genetic causes underlying spermiogenic failure in men are still
largely unknown, Ube2j1 and other components of this path-
way warrant closer examination and might be useful as diag-
nostic markers for male infertility in humans in the future.
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